CPO2D -30th example file, enhancement factor for a 'hemisphere on post'.


The 'post' has a height h = 1 micron (ie 0.01mm) and a radius a = 1nm. To create a field an anode is placed at an arbitrary 9 micron away, with a potential of 0.01V, giving a 'far field' of 1V/mm.


The field enhancement factor depends only on h/a


The ray output file contains the field at 10 points at distances of 0.05 to 0.5 nm from the surface of the cap.

Results, fields in V/mm:

r

z

er

ez

etotal

0.000E+00

5.000E-08

0.000000E+00

-5.464995E+02

5.464995E+02

0.000E+00

1.000E-07

0.000000E+00

-4.984520E+02

4.984520E+02

0.000E+00

1.500E-07

0.000000E+00

-4.567765E+02

4.567765E+02

0.000E+00

2.000E-07

0.000000E+00

-4.203965E+02

4.203965E+02

0.000E+00

2.500E-07

0.000000E+00

-3.884485E+02

3.884485E+02

0.000E+00

3.000E-07

0.000000E+00

-3.602371E+02

3.602371E+02

0.000E+00

3.500E-07

0.000000E+00

-3.351977E+02

3.351977E+02

0.000E+00

4.000E-07

0.000000E+00

-3.128681E+02

3.128681E+02

0.000E+00

4.500E-07

0.000000E+00

-2.928671E+02

2.928671E+02

0.000E+00

5.000E-07

0.000000E+00

-2.748781E+02

2.748781E+02


Analysis of the results:

Extrapolate field to z=0 by quartic extrapolation of E(z)*(z+1e-6)**2: gives E(a) = 602.29. Therefore enhancement factor, gamma = 602.29


Vary N = number of segments, dz = z_anode - z_baseplate, r = radius of bridge to ensure that inaccuracy is less than about 0.01 percent. All dimensions in mm, radius a of cap = 1E-6mm


Vary length h of post:

h

l/a

N

dz

r

gamma

Edgcombe

Fit

difference%

.003

3001

1650

.06

.03

1644.99

1643.6

1643.29

0.10

.001

1001

750

.01

.01

602.82

597.5

603.33

0.09

.0003

301

950

.01

.01

202.21

200.5

202.88

0.33

.0001

101

750

.01

.01

76.994

76.37

76.76

0.30

.00003

31

950

.01

.01

28.405

28.18

28.43

0.07


Here l = h + a, the total length of the nanotube.


The empirical fit is to 1.0782*(l/a + 4.7)**0.9152


The column labelled 'Edgcombe' are those given by C J Edgcombe and U Valdre, Solid State Electronics 45 (2001) 857-863. These authors use the fit

1.125*(l/a + 2)**0.91


Dependence of field strength on angle (ie angle to axis): 


theta

Er

fit

difference%

0

602.84

601.65

0.2

10

601.54

600.25

0.2

20

597.51

596.14

0.2

30

590.61

589.24

0.2

40

580.54

579.33

0.2

50

566.78

566.12

0.1

60

548.45

549.20

0.1

70

523.98

527.28

0.6

80

489.68

497.15

1.5

90

428.29

422.59

1.3


Fit is 422.6 + 179.1*sqrt(cos(theta))